rick-slo писал:
«Не вижу логики».
Я в основном думал о том, что printer2 писал:
«У вершины будет резонансная частота. С дугой к ней у вершины будет более высокая частота, чем у плоской вершины из-за жесткости, добавленной кривой. "
Теоретически, добавление некоторой кривой к плоской пластине делает ее более жесткой, и может быть большой скачок в жесткости между ' нет кривой и немного кривой. Это особенно заметно в «свободной» пластине, особенно если есть режим «кольца». Однако, как только вы приклеите его к ряду сторон, разница станет намного меньше. Резная арка, с высотой около 15 мм, заметно жестче, чем плоская пластина того же размера, но как только вы сделаете их на гитаре, разница не так велика, как вы могли ожидать. Гитара с арочным верхом, которую я сделал несколько лет назад по шаблону «Small Jumbo», имеет резонанс «основной вершины» при 250 Гц, в то время как плоская вершина такого же размера имеет такой же резонанс при 213 Гц.
Для сравнения, относительно низкая арка «куполообразной» плоской вершины не должна иметь слишком большого различия по сравнению с «плоской» вершиной. Принимая во внимание, что между вершинами существует значительное количество различий, и что профилирование фигурных скобок может иметь заметный эффект, я подозреваю, что было бы трудно показать, что куполообразные вершины сильно отличаются по акустике от «плоских» любым систематическим способом.
Вы можете утверждать, что небольшие различия могут быть важными, и это, безусловно, правда. Та вершина арки, о которой я упоминал, звучит немного иначе, чем плоская вершина, хотя трудно сказать, сколько из этого, если из арки и сколько из F-отверстий против круглого отверстия. И всегда есть «Диктум Фейнмана»: «Тебя легче всего обмануть». Люди действительно слышат то, что ожидают услышать, особенно, когда они приложили некоторые усилия в результате.
Я укажу, что я никогда не делал «плоский» топ. Проблемы влажности - такая проблема здесь, в Новой Англии, что это просто не стоит риска.